Extensions 1→N→G→Q→1 with N=C32 and Q=C4xD5

Direct product G=NxQ with N=C32 and Q=C4xD5
dρLabelID
D5xC3xC12180D5xC3xC12360,91

Semidirect products G=N:Q with N=C32 and Q=C4xD5
extensionφ:Q→Aut NdρLabelID
C32:1(C4xD5) = D5xC32:C4φ: C4xD5/D5C4 ⊆ Aut C32308+C3^2:1(C4xD5)360,130
C32:2(C4xD5) = Dic3xD15φ: C4xD5/C10C22 ⊆ Aut C321204-C3^2:2(C4xD5)360,77
C32:3(C4xD5) = C6.D30φ: C4xD5/C10C22 ⊆ Aut C32604+C3^2:3(C4xD5)360,79
C32:4(C4xD5) = D30.S3φ: C4xD5/C10C22 ⊆ Aut C321204C3^2:4(C4xD5)360,84
C32:5(C4xD5) = C3xD30.C2φ: C4xD5/Dic5C2 ⊆ Aut C321204C3^2:5(C4xD5)360,60
C32:6(C4xD5) = C30.D6φ: C4xD5/Dic5C2 ⊆ Aut C32180C3^2:6(C4xD5)360,67
C32:7(C4xD5) = C12xD15φ: C4xD5/C20C2 ⊆ Aut C321202C3^2:7(C4xD5)360,101
C32:8(C4xD5) = C4xC3:D15φ: C4xD5/C20C2 ⊆ Aut C32180C3^2:8(C4xD5)360,111
C32:9(C4xD5) = C3xD5xDic3φ: C4xD5/D10C2 ⊆ Aut C32604C3^2:9(C4xD5)360,58
C32:10(C4xD5) = D5xC3:Dic3φ: C4xD5/D10C2 ⊆ Aut C32180C3^2:10(C4xD5)360,65


׿
x
:
Z
F
o
wr
Q
<